超越100G速率的相干光传输技术探讨

时间:2019-4-12 分享到:

当前国内100G DWDM系统波长资源即将耗尽,400G迫在眉睫,人们期待着频谱效率更高的DWDM系统。

近年来数字相干光传输系统被广泛关注,易飞扬(Gigalight)于去年深圳光博会上首次展出了100G CFP DCO相干光模块,象征着公司在该领域的领先地位。当前400G以太网传输的标准化正在进行中——这为每通道超过100G的光传输技术提供了商业开发潜力。

超越100G速率的相干光传输技术探讨

相干光模块使用相干检测技术提高了接收灵敏度和频谱效率,另外使用DSP(数字信号处理)的技术实现了由长距离光纤传输过程中累积的波长失真的补偿。改进现有的100G传输技术有两种可能的方向:增强性能和降低功耗。

数字相干光传输调制技术

当OOK以100Gbit/s的速率应用于传输的时候,在光纤传输过程中的各种波形失真导致了信号传输质量下降十分显著,结果就是传输距离仅限于几公里。

当前应用于100Gbit/s相干的主要调制方案是双极化正交相移键控(DP-QPSK)。DP-QPSK调制具有四个不同相位的光信号,并且还使用X偏振波和Y偏振波来承载不同的信号。

DP-QPSK的频谱使用率是OOK的四倍,信号经过诸如均衡等前端处理,进入光混频器与本地振荡器产生的光信号进行相干混合。

超越100G速率的相干光传输技术探讨

如果要进一步增加光传输系统的容量——达到200G或者400G, 则必须要使用更高的多级调制光信号,例如双极化16级正交幅度调制(DP-16QAM)等。

不过需要注意的是,越是高级的调制技术对系统的要求越高,图5体现了不同调制级数对传输距离的影响。

为了增加每根光纤的传输容量,有必要提升频谱利用率——实现此目标的有效方式是增加光学幅度或者相位中调制级别的数量。

因此如果我们要设计超过100G的相干光传输系统,我们需要结合非线性补偿、自适应调制/解调以及高编码增益FEC(前向纠错)等多种技术。

提高频谱利用率的一种有效方法是减少WDM中相邻信道之间的频率间隔——这要求缩小光信号的频谱,奈奎斯特滤波对此至关重要,因为它使得发射机处的DSP通过减少光信号频谱的方式最大限度地提升了频谱效率。

超越100G速率的相干光传输技术探讨

由图7的左边部分可以看到随着信号速率的提高,光信号的频谱也在变宽。

右边部分给出了使用多种不同技术的组合如何提高频谱效率的想法。举例来说,与NRZ-OOK调制格式相比,使用QPSK可以将符号利用率提升两倍。这样我们就使用一半的符号率传输同样速率的数据,占用的光谱带宽也减少了一半。

通过QPSK高阶调制和PDM偏振复用技术,我们将单波长通道的光信号频谱占用减小到了原来的四分之一。最后再利用脉冲整形滤波器进一步缩小占用频谱之后,可以在50GHz带宽的信道中传输112Gbps的数据。

DSP如何处理信号?

超越100G速率的相干光传输技术探讨

成帧器将局域网(LAN)输入的两个100Gbit/s以太网(100GbE)信号转换为两个光传输网络(OTN)帧格式(OTU4信号)并将其输出到DSP。

最后信号被转换成200Gbit/s DP-16QAM信号并发送至光传输系统(OTN)。

在接收器中

DSP将模拟信号转换为数字信号,并补偿光纤中色散和非线性效应引起的波形失真。随后执行自适应均衡实现偏振复用信号的解复用,并补偿由于诸如PMD等因素引起的波形失真。

小结

本文摘录了相关论文,仅代表个人观点,如有不当之处,欢迎指正。原文来自易飞扬通信https://www.gigalight.com/cn/bbs/article/over-100g-coherent-technology.html

部分内容引用自:

? Yoshiaki Kisaka, Masahito Tomizawa, Yutaka Miyamoto, “Digital Signal Processor(DSP)for Beyond 100G Optical Transport”

版权所有:https://www.dianrong1.com 转载请注明出处